Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
Nucleic Acids Res ; 52(D1): D115-D123, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37823705

RESUMO

Circular RNAs (circRNAs) are RNA molecules with a continuous loop structure characterized by back-splice junctions (BSJs). While analyses of short-read RNA sequencing have identified millions of BSJ events, it is inherently challenging to determine exact full-length sequences and alternatively spliced (AS) isoforms of circRNAs. Recent advances in nanopore long-read sequencing with circRNA enrichment bring an unprecedented opportunity for investigating the issues. Here, we developed FL-circAS (https://cosbi.ee.ncku.edu.tw/FL-circAS/), which collected such long-read sequencing data of 20 cell lines/tissues and thereby identified 884 636 BSJs with 1 853 692 full-length circRNA isoforms in human and 115 173 BSJs with 135 617 full-length circRNA isoforms in mouse. FL-circAS also provides multiple circRNA features. For circRNA expression, FL-circAS calculates expression levels for each circRNA isoform, cell line/tissue specificity at both the BSJ and isoform levels, and AS entropy for each BSJ across samples. For circRNA biogenesis, FL-circAS identifies reverse complementary sequences and RNA binding protein (RBP) binding sites residing in flanking sequences of BSJs. For functional patterns, FL-circAS identifies potential microRNA/RBP binding sites and several types of evidence for circRNA translation on each full-length circRNA isoform. FL-circAS provides user-friendly interfaces for browsing, searching, analyzing, and downloading data, serving as the first resource for discovering full-length circRNAs at the isoform level.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Circular , Animais , Humanos , Camundongos , Processamento Alternativo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Sequenciamento por Nanoporos , RNA Circular/genética , Isoformas de RNA/genética
2.
J Inorg Biochem ; 251: 112422, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016326

RESUMO

Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.


Assuntos
Citoglobina , Isoformas de RNA , Humanos , Citoglobina/química , Citoglobina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
4.
RNA Biol ; 20(1): 908-925, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37906624

RESUMO

Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.


Assuntos
Regulação da Expressão Gênica , Poliadenilação , Humanos , Regiões 3' não Traduzidas , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Diferenciação Celular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nucleic Acids Res ; 51(20): e104, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843096

RESUMO

Small exons are pervasive in transcriptomes across organisms, and their quantification in RNA isoforms is crucial for understanding gene functions. Although long-read RNA-seq based on Oxford Nanopore Technologies (ONT) offers the advantage of covering transcripts in full length, its lower base accuracy poses challenges for identifying individual exons, particularly microexons (≤ 30 nucleotides). Here, we systematically assess small exons quantification in synthetic and human ONT RNA-seq datasets. We demonstrate that reads containing small exons are often not properly aligned, affecting the quantification of relevant transcripts. Thus, we develop a local-realignment method for misaligned exons (MisER), which remaps reads with misaligned exons to the transcript references. Using synthetic and simulated datasets, we demonstrate the high sensitivity and specificity of MisER for the quantification of transcripts containing small exons. Moreover, MisER enabled us to identify small exons with a higher percent spliced-in index (PSI) in neural, particularly neural-regulated microexons, when comparing 14 neural to 16 non-neural tissues in humans. Our work introduces an improved quantification method for long-read RNA-seq and especially facilitates studies using ONT long-reads to elucidate the regulation of genes involving small exons.


Assuntos
Éxons , Isoformas de RNA , Análise de Sequência de RNA , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Isoformas de Proteínas/genética , RNA , Isoformas de RNA/genética , RNA-Seq , Análise de Sequência de RNA/métodos , Transcriptoma
6.
Elife ; 122023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37384380

RESUMO

Aurora Kinase A (AURKA) is an oncogenic kinase with major roles in mitosis, but also exerts cell cycle- and kinase-independent functions linked to cancer. Therefore, control of its expression, as well as its activity, is crucial. A short and a long 3'UTR isoform exist for AURKA mRNA, resulting from alternative polyadenylation (APA). We initially observed that in triple-negative breast cancer, where AURKA is typically overexpressed, the short isoform is predominant and this correlates with faster relapse times of patients. The short isoform is characterized by higher translational efficiency since translation and decay rate of the long isoform are targeted by hsa-let-7a tumor-suppressor miRNA. Additionally, hsa-let-7a regulates the cell cycle periodicity of translation of the long isoform, whereas the short isoform is translated highly and constantly throughout interphase. Finally, disrupted production of the long isoform led to an increase in proliferation and migration rates of cells. In summary, we uncovered a new mechanism dependent on the cooperation between APA and miRNA targeting likely to be a route of oncogenic activation of human AURKA.


Assuntos
Aurora Quinase A , MicroRNAs , Humanos , Aurora Quinase A/genética , Ciclo Celular/genética , MicroRNAs/genética , Mitose , Recidiva Local de Neoplasia , Isoformas de RNA
7.
Front Immunol ; 14: 1182525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359548

RESUMO

Introduction: Macrophages are essential cells of the immune system that alter their inflammatory profile depending on their microenvironment. Alternative polyadenylation in the 3'UTR (3'UTR-APA) and intronic polyadenylation (IPA) are mechanisms that modulate gene expression, particularly in cancer and activated immune cells. Yet, how polarization and colorectal cancer (CRC) cells affect 3'UTR-APA and IPA in primary human macrophages was unclear. Methods: In this study, we isolated primary human monocytes from healthy donors, differentiated and polarized them into a pro-inflammatory state and performed indirect co-cultures with CRC cells. ChrRNA-Seq and 3'RNA-Seq was performed to quantify gene expression and characterize new 3'UTR-APA and IPA mRNA isoforms. Results: Our results show that polarization of human macrophages from naïve to a pro-inflammatory state causes a marked increase of proximal polyA site selection in the 3'UTR and IPA events in genes relevant to macrophage functions. Additionally, we found a negative correlation between differential gene expression and IPA during pro-inflammatory polarization of primary human macrophages. As macrophages are abundant immune cells in the CRC microenvironment that either promote or abrogate cancer progression, we investigated how indirect exposure to CRC cells affects macrophage gene expression and 3'UTR-APA and IPA events. Co-culture with CRC cells alters the inflammatory phenotype of macrophages, increases the expression of pro-tumoral genes and induces 3'UTR-APA alterations. Notably, some of these gene expression differences were also found in tumor-associated macrophages of CRC patients, indicating that they are physiologically relevant. Upon macrophage pro-inflammatory polarization, SRSF12 is the pre-mRNA processing gene that is most upregulated. After SRSF12 knockdown in M1 macrophages there is a global downregulation of gene expression, in particular in genes involved in gene expression regulation and in immune responses. Discussion: Our results reveal new 3'UTR-APA and IPA mRNA isoforms produced during pro-inflammatory polarization of primary human macrophages and CRC co-culture that may be used in the future as diagnostic or therapeutic tools. Furthermore, our results highlight a function for SRSF12 in pro-inflammatory macrophages, key cells in the tumor response.


Assuntos
Neoplasias Colorretais , Poliadenilação , Humanos , Poliadenilação/genética , Regiões 3' não Traduzidas/genética , Isoformas de RNA , Macrófagos , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
8.
Nat Commun ; 14(1): 2631, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149708

RESUMO

Although long-read single-cell RNA isoform sequencing (scISO-Seq) can reveal alternative RNA splicing in individual cells, it suffers from a low read throughput. Here, we introduce HIT-scISOseq, a method that removes most artifact cDNAs and concatenates multiple cDNAs for PacBio circular consensus sequencing (CCS) to achieve high-throughput and high-accuracy single-cell RNA isoform sequencing. HIT-scISOseq can yield >10 million high-accuracy long-reads in a single PacBio Sequel II SMRT Cell 8M. We also report the development of scISA-Tools that demultiplex HIT-scISOseq concatenated reads into single-cell cDNA reads with >99.99% accuracy and specificity. We apply HIT-scISOseq to characterize the transcriptomes of 3375 corneal limbus cells and reveal cell-type-specific isoform expression in them. HIT-scISOseq is a high-throughput, high-accuracy, technically accessible method and it can accelerate the burgeoning field of long-read single-cell transcriptomics.


Assuntos
Isoformas de RNA , RNA , Isoformas de RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Consenso , Isoformas de Proteínas/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA
9.
RNA ; 29(8): 1099-1107, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137666

RESUMO

RT-PCR and northern blots have long been used to study RNA isoforms usage for single genes. Recent advancements in long-read sequencing have yielded unprecedented information about the usage and abundance of these RNA isoforms. However, visualization of long-read sequencing data remains challenging due to the high information density. To alleviate these issues, we have developed NanoBlot, an open-source R-package that generates northern blot and RT-PCR-like images from long-read sequencing data. NanoBlot requires aligned, positionally sorted and indexed BAM files. Plotting is based around ggplot2 and is easily customizable. Advantages of NanoBlot include a robust system for designing probes to visualize isoforms including excluding reads based on the presence or absence of a specified region, an elegant solution to representing isoforms with continuous variations in length, and the ability to overlay multiple genes in the same plot using different colors. We present examples of nanoblots compared to actual northern blot data. In addition to traditional gel-like images, the NanoBlot package can also output other visualizations such as violin plots and 3'-RACE-like plots focused on 3'-end isoforms visualization. The use of the NanoBlot package should provide a simple answer to some of the challenges of visualizing long-read RNA-sequencing data.


Assuntos
Isoformas de RNA , RNA , RNA/genética , Isoformas de RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Isoformas de Proteínas/genética , Processamento Alternativo , Perfilação da Expressão Gênica/métodos , Transcriptoma
10.
Biochem Soc Trans ; 51(3): 1111-1119, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37171086

RESUMO

The 3' untranslated region (3'UTR) of mRNA plays a key role in the post-transcriptional regulation of gene expression. Most eukaryotic protein-coding genes express 3'UTR isoforms owing to alternative cleavage and polyadenylation (APA). The 3'UTR isoform expression profile of a cell changes in cell proliferation, differentiation, and stress conditions. Here, we review the emerging theme of regulation of 3'UTR isoforms in cell metabolic reprogramming, focusing on cell growth and autophagy responses through the mTOR pathway. We discuss regulatory events that converge on the Cleavage Factor I complex, a master regulator of APA in 3'UTRs, and recent understandings of isoform-specific m6A modification and endomembrane association in determining differential metabolic fates of 3'UTR isoforms.


Assuntos
Regulação da Expressão Gênica , Isoformas de RNA , Regiões 3' não Traduzidas/genética , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Poliadenilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Cell ; 186(11): 2438-2455.e22, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37178687

RESUMO

The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.


Assuntos
Processamento Alternativo , Isoformas de RNA , Sítio de Iniciação de Transcrição , Humanos , Poliadenilação , Regiões Promotoras Genéticas , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(18): e2301117120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094136

RESUMO

Alternative polyadenylation generates numerous 3' mRNA isoforms that can differ in their stability, structure, and function. These isoforms can be used to map mRNA stabilizing and destabilizing elements within 3' untranslated regions (3'UTRs). Here, we examine how environmental conditions affect 3' mRNA isoform turnover and structure in yeast cells on a transcriptome scale. Isoform stability broadly increases when cells grow more slowly, with relative half-lives of most isoforms being well correlated across multiple conditions. Surprisingly, dimethyl sulfate probing reveals that individual 3' isoforms have similar structures across different conditions, in contrast to the extensive structural differences that can exist between closely related isoforms in an individual condition. Unexpectedly, most mRNA stabilizing and destabilizing elements function only in a single growth condition. The genes associated with some classes of condition-specific stability elements are enriched for different functional categories, suggesting that regulated mRNA stability might contribute to adaptation to different growth environments. Condition-specific stability elements do not result in corresponding condition-specific changes in steady-state mRNA isoform levels. This observation is consistent with a compensatory mechanism between polyadenylation and stability, and it suggests that condition-specific mRNA stability elements might largely reflect condition-specific regulation of mRNA 3' end formation.


Assuntos
Isoformas de RNA , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Poliadenilação , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Estabilidade de RNA/genética
14.
Genome Biol ; 24(1): 66, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024980

RESUMO

Long-read single-cell RNA sequencing (scRNA-seq) enables the quantification of RNA isoforms in individual cells. However, long-read scRNA-seq using the Oxford Nanopore platform has largely relied upon matched short-read data to identify cell barcodes. We introduce BLAZE, which accurately and efficiently identifies 10x cell barcodes using only nanopore long-read scRNA-seq data. BLAZE outperforms the existing tools and provides an accurate representation of the cells present in long-read scRNA-seq when compared to matched short reads. BLAZE simplifies long-read scRNA-seq while improving the results, is compatible with downstream tools accepting a cell barcode file, and is available at https://github.com/shimlab/BLAZE .


Assuntos
Isoformas de RNA , Análise da Expressão Gênica de Célula Única , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Software , Perfilação da Expressão Gênica/métodos
15.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36975404

RESUMO

Spermatogenic cells express more alternatively spliced RNAs than most whole tissues; however, the regulation of these events remains unclear. Here, we have characterized the function of a testis-specific IQ motif-containing H gene (Iqch) using a mutant mouse model. We found that Iqch is essential for the specific expression of RNA isoforms during spermatogenesis. Using immunohistochemistry of the testis, we noted that Iqch was expressed mainly in the nucleus of spermatocyte and spermatid, where IQCH appeared juxtaposed with SRRM2 and ERSP1 in the nuclear speckles, suggesting that interactions among these proteins regulate alternative splicing (AS). Using RNA-seq, we found that mutant Iqch produces alterations in gene expression, including the clear downregulation of testis-specific lncRNAs and protein-coding genes at the spermatid stage, and AS modifications - principally increased intron retention - resulting in complete male infertility. Interestingly, we identified previously unreported spliced transcripts in the wild-type testis, while mutant Iqch modified the expression and use of hundreds of RNA isoforms, favouring the expression of the canonical form. This suggests that Iqch is part of a splicing control mechanism, which is essential in germ cell biology.


Assuntos
Isoformas de RNA , Testículo , Animais , Camundongos , Masculino , Testículo/metabolismo , Isoformas de RNA/metabolismo , Espermatogênese/genética , Espermátides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
16.
Biochem J ; 480(5): 385-401, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852878

RESUMO

Doublesex (DSX) proteins are members of the Doublesex/mab-3-related (DMRT) protein family and play crucial roles in sex determination and differentiation among the animal kingdom. In the present study, we identified two Doublesex (Dsx)-like mRNA isoforms in the brine shrimp Artemia franciscana (Kellogg 1906), which are generated by the combination of alternative promoters, alternative splicing and alternative polyadenylation. The two transcripts exhibited sex-biased enrichment, which we termed AfrDsxM and AfrDsxF. They share a common region which encodes an identical N-terminal DNA-binding (DM) domain. RT-qPCR analyses showed that AfrDsxM is dominantly expressed in male Artemia while AfrDsxF is specifically expressed in females. Expression levels of both isoforms increased along with the developmental stages of their respective sexes. RNA interference with dsRNA showed that the knockdown of AfrDsxM in male larvae led to the appearance of female traits including an ovary-like structure in the original male reproductive system and an elevated expression of vitellogenin. However, silencing of AfrDsxF induced no clear phenotypic change in female Artemia. These results indicated that the male AfrDSXM may act as inhibiting regulator upon the default female developmental mode in Artemia. Furthermore, electrophoretic mobility shift assay analyses revealed that the unique DM domain of AfrDSXs can specifically bind to promoter segments of potential downstream target genes like AfrVtg. These data show that AfrDSXs play crucial roles in regulating sexual development in Artemia, and further provide insight into the evolution of sex determination/differentiation in sexual organisms.


Assuntos
Artemia , Isoformas de RNA , Animais , Masculino , Feminino , Artemia/genética , Isoformas de RNA/metabolismo , Processamento Alternativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Diferenciação Sexual/genética
17.
Neuropsychopharmacol Rep ; 43(1): 126-131, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649932

RESUMO

Brain-derived neurotrophic factor has functional mRNA isoforms, whose expression is assumed to mediate the beneficial effects of exercise in neuropsychiatric disorders. This study aims to reveal the mechanism of intensity-dependent effects of voluntary exercise, focusing on the expression of Bdnf mRNA isoforms in Hatano rats. Animals with different voluntary activity were housed in cages with a locked or unlocked wheel for 5 weeks. The expression levels of Bdnf isoforms and the corresponding coding sequences (CDS) were measured in the hippocampus using real-time polymerase chain reaction (PCR). We found that exercise increased the expression of Bdnf isoform containing exon 1 in the high-intensity-running strain and decreased the expressions of Bdnf exon 1, 3, 6, 7, 8, and 9a in mild-intensity-running animal. The expression of Bdnf CDS was increased by exercise in both strains. These results suggest that expressions of Bdnf isoforms depend on the intensities of voluntary exercise, but the involvement of subjects' genetic background could not be excluded. Our finding also implies that the bidirectional effects of exercise may not be mediated via the final product of Bdnf.


Assuntos
Condicionamento Físico Animal , Isoformas de RNA , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Isoformas de RNA/metabolismo , Ratos
18.
Wiley Interdiscip Rev RNA ; 14(3): e1762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36123820

RESUMO

Balanced mRNA isoform diversity and abundance are spatially and temporally regulated throughout cellular differentiation. The proportion of expressed isoforms contributes to cell type specification and determines key properties of the differentiated cells. Neurons are unique cell types with intricate developmental programs, characteristic cellular morphologies, and electrophysiological potential. Neuron-specific gene expression programs establish these distinctive cellular characteristics and drive diversity among neuronal subtypes. Genes with neuron-specific alternative processing are enriched in key neuronal functions, including synaptic proteins, adhesion molecules, and scaffold proteins. Despite the similarity of neuronal gene expression programs, each neuronal subclass can be distinguished by unique alternative mRNA processing events. Alternative processing of developmentally important transcripts alters coding and regulatory information, including interaction domains, transcript stability, subcellular localization, and targeting by RNA binding proteins. Fine-tuning of mRNA processing is essential for neuronal activity and maintenance. Thus, the focus of neuronal RNA biology research is to dissect the transcriptomic mechanisms that underlie neuronal homeostasis, and consequently, predispose neuronal subtypes to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.


Assuntos
Neurônios , Isoformas de RNA , Isoformas de RNA/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Alternativo
19.
Gene Expr Patterns ; 47: 119302, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36516960

RESUMO

Transcriptional enhanced associate domain (TEAD) transcription factors play important roles in embryonic stem cell (ESC) renewal and differentiation. Four TEAD transcription factors (Tead1, Tead2, Tead3 and Tead4) and their various splice variants have been discovered in mice, but the expression pattern of them during pluripotency state transition is unclear. Here, we investigated the expression of TEADs and their splice variants in mouse ESCs at different pluripotent/differentiating states and adult mouse tissues. Our results preliminarily revealed the diversity and heterogeneity of TEAD family, which is helpful for understanding their overlapping and distinctive functions. Furthermore, a novel splice variant of Tead1 was identified and named Tead1 isoform 4.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Células-Tronco Embrionárias Murinas , Fatores de Transcrição de Domínio TEA , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Murinas/metabolismo , Isoformas de RNA/genética , Splicing de RNA/genética , Fatores de Transcrição de Domínio TEA/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Processamento Alternativo/genética , Células Cultivadas
20.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361635

RESUMO

Castration-resistant prostate cancer (CRPC) is a common form of prostate cancer in which docetaxel-based chemotherapy is used as the first line. The present study is devoted to the analysis of transcriptome profiles of tumor cells in the development of resistance to docetaxel as well as to the assessment of the combined effect with the XAV939 tankyrase inhibitor on maintaining the sensitivity of tumor cells to chemotherapy. RNA-Seq was performed for experimental PC3 cell lines as well as for plasma exosome samples from patients with CRPC. We have identified key biological processes and identified a signature based on the expression of 17 mRNA isoforms associated with the development of docetaxel resistance in PC3 cells. Transcripts were found in exosome samples, the increased expression of which was associated with the onset of progression of CRPC during therapy. The suppression of pathways associated with the participation of cellular microtubules has also been shown when cells are treated with docetaxel in the presence of XAV939. These results highlight the importance of further research into XAV939 as a therapeutic agent in the treatment of CRPC; moreover, we have proposed a number of mRNA isoforms with high predictive potential, which can be considered as promising markers of response to docetaxel.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transcriptoma , beta Catenina/metabolismo , Isoformas de RNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...